Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We propose and analyze a protocol for stabilizing a maximally entangled state of two noninteracting qubits using active state-dependent feedback from a continuous two-qubit half-parity measurement in coordination with a concurrent, noncommuting dynamical decoupling drive. We demonstrate that such a drive can be simultaneous with the measurement and feedback, while also playing a key part in the feedback protocol itself. We show that robust stabilization with near-unit fidelity can be achieved even in the presence of realistic nonidealities, such as time delay in the feedback loop, imperfect state-tracking, inefficient measurements, dephasing from 1/𝑓-distributed qubit-frequency noise, and relaxation. We mitigate feedback-delay error by introducing a forward-state-estimation strategy in the feedback controller that tracks the effects of control signals already in transit. More generally, the steady state is globally attractive without the need for ancillas, regardless of the error state, in contrast to most known feedback and error-correction schemes.more » « less
- 
            Abstract Hamiltonian simulation is one of the most important problems in quantum computation, and quantum singular value transformation (QSVT) is an efficient way to simulate a general class of Hamiltonians. However, the QSVT circuit typically involves multiple ancilla qubits and multi-qubit control gates. In order to simulate a certain class of n -qubit random Hamiltonians, we propose a drastically simplified quantum circuit that we refer to as the minimal QSVT circuit, which uses only one ancilla qubit and no multi-qubit controlled gates. We formulate a simple metric called the quantum unitary evolution score (QUES), which is a scalable quantum benchmark and can be verified without any need for classical computation. Under the globally depolarized noise model, we demonstrate that QUES is directly related to the circuit fidelity, and the potential classical hardness of an associated quantum circuit sampling problem. Under the same assumption, theoretical analysis suggests there exists an ‘optimal’ simulation time t opt ≈ 4.81, at which even a noisy quantum device may be sufficient to demonstrate the potential classical hardness.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
